
1

Learning from Failed Demonstrations
Abdul Rafay Khalid

I. INTRODUCTION

MOST learning from demonstration techniques assume
that the demonstrator is capable of perfectly performing

a task and try to learn a model for the task based on them.
However, certain tasks can only be performed by experts and
thus the demonstrator may fail to generate any successful
trials. These trials contain crucial information on what not
to do. Motivated by the ability of infants to learn tasks from
failed demonstrations [4], we attempt to find an approach that
enables us to learn tasks from failures.

For this project we apply the approach to the classic problem
of inverted pendulum on a cart and attempt to come up with
methods to benefit from both the successful and unsuccessful
portions of a demonstration.

April 4, 2015

II. RELATED WORK

This project builds upon existing work in the Robot Learn-
ing from Demonstration field. For such an approach, human
users are recorded multiple times while doing a task. These
trajectories are then used by the robot to infer a model for the
task. Schaal [5] describes some early work in which learning
from demonstration is coupled with existing techniques in
reinforcement learning for robotic pole balancing. More recent
work in this area is described by Argall et al [1] which also
analyses the various design choices. These approaches try to
learn a mapping between the state and correct action to be
taken by the robot, however they all assume that the examples
used for training are correct.
More recently, there is an attempt to give up the assumption
of perfectly correct demonstrations to in favor of suboptimal
ones. The POWER algorithm proposed by [3] uses demonstra-
tions to learn the mapping between states and actions which is
then improved by using reinforcement learning. The problem
with using reinforcement learning is that it requires an explicit
reward function. Coming up with a good reward function
requires domain specific knowledge. In addition such a system
would fail if there were no successful demonstrations.
Our project builds upon the work of Grollman et al[2] which
tries to address these challenges. It assumes that all the demon-
strations are failures and tries to come up with strategies for
exploration in order to efficiently find a successful trajectory.
It does not require the use of a reward function and treats each
failure equally. This project tries to apply their algorithm to a
different kind of scenario. They demonstrate their system on
two tasks; flipping a block and throwing a ball into a basket.
For both of these tasks failure is a binary variable. We attempt
to apply it to the case of a pendulum on a cart for which not all
failures are equal and within each trajectory certain portions
could be success while others could be failures. We need to

come up with some heuristic to separate the trajectory as well
as use their later work on giving weights to trajectories so that
not all failures are treated equally.

III. PROBLEM DEFINITION

The problem is to generate exploratory trajectories which
can result in success after looking at failed demonstrations.
Notation:
ξ represents the state of the robot
ξ̇ represent the velocity of the robot
ξ̇ = fθ(ξ) is a non linear function that captures the relationship
between the state and velocity of a robot
Input:
Ak = [(ξ, ξ̇)0, (ξ, ξ̇)1, ...(ξ, ξ̇)N]
S = {A0, A1, ..., ANs

} where A is a trajectory demonstrated
to the robot that leads to failure and S is the set of Ns such
trajectories
Output:
ξ̇ = gθ(ξ) which is a mapping between the state and the
velocities such that following this mapping leads the user to
success.

IV. METHODS

We intend to evaluate the Learning From Failed Demon-
strations algorithm proposed by Grollman et al [2] to the case
of an inverted pendulum on a cart. This is a standard problem
in controls where the task is to keep the pendulum upright by
applying force on the cart. Refer to figure 3. The algorithm for
the method is reproduced below:

Collect S human failed attempts
Fit a GMM (θ) on S
while Robot has not succeeded do

t = 0
ξt = current state of the system
ξ̇t = DMM(ξ̇,ξ,θ)
while |ξ̇| 6= 0 and not timeout do

Maximize P(ξ̇|ξ) with gradient ascent
apply ξ̇ to the system
t = t + 1
ξt = Current state of the system
ξ̇t = ˙ξt−1

end while
update θ

end while
The algorithm takes the multiple failed trials as input and

tries to fit a Gaussian Mixture model on the joint distribution
of ξ and ξ̇. In this paper Grollman et al have come up
with a probability distribution called the Donut which is the
difference of two Gaussians but has the interesting property
that it is low where Gaussian is high. In the outer while

2

loop they construct a Donut Mixture Model based on the
parameters of the GMM. The inner loop makes the robot
follow a trajectory by choosing a velocity that corresponds to
the maxima of the DMM given the current state. This allows
us to explore trajectories which are different from what the
user did.

A. Generate Trajectories and Build Model

For the inverted pendulum system , we use ξ = θ and
ξ̇ = F . I modeled the inverted pendulum system using
the Gazebo simulation environment.This is interfaced with
a ROS node to record trajectories either based on keyboard
input or using some control law. I initially tried generating
demonstrations with the keyboard but found it particularly
difficult. Instead I generated my demonstrations by simulating
a noisy proportional controller. A bunch of demonstrations are
collected using the simulation control node and Gazebo. The
first step in the algorithm is to build a Gaussian mixture model
from the acquired demonstrations. This has been implemented
as a matlab script that takes the trajectories generated and fits
the mixture model using Expectation Maximization with the
minimum Bayes Information Criterion.

B. Perform Exploration and Update Model

Once the Gaussian mixture model have been trained we
need to find exploratory trajectories on the basis of that model.
To perform the exploration we need to compute a Donut
Mixture Model from A GMM. This is constructed from a
difference of two Gaussian distribution ans is parametrized by
an exploration parameter ε. By varying the parameter from 0 to
1 we can go from a distribution that replicates the Gaussian to
one which is something like the inverse of a Gaussian. Figure
2 shows the variation of the distribution as we modify ε. A
ROS node is written in python using PyPr which allows us
to compute the most likely Force according the DMM for the
current state. This node acts as a service which is accessed
by the simulation controller to apply the appropriate force
on the basis of the state received from the simulation. This
interaction is shown in figure 1. Inside the exploration node
we first compute the conditional distribution P (ξ̇|ξ) from the
joint distribution P (ξ̇, ξ) which is represented by the GMM.
Depending on the current state we compute the exploration
parameter as follows.

ε =
1

1 + V ar[ξ̇|ξ]
Var represents the variance in the values of force applied for
that particular state across the trajectories.In cases when the
trajectories agree this is close to 0 while in cases when there is
disagreement this will approach 1. Depending on the current
value of exploration we convert the GMM to DMM. As we do
not have a closed form solution for the arg max of the DMM,
we use gradient ascent to find the local maxima and return
that as the appropriate force. The simulation controller then
applies this force in the simulation and the process continues
until the trajectory reaches a predetermined length.
To update the model, we simply retrain our model with the

Fig. 1. Data exchange between the nodes

Fig. 2. Variation in Donut with the exploration parameter

additional data from the new exploration. The process of
generating trajectories continues until we get a trajectory of
our choice.

C. Building model with cost

For this project, we also try assigning a cost to each
trajectory and using that cost to improve the model. Failure
in the inverted pendulum system is not discrete and to model
how good or bad a trajectory is we use the following cost.

C =
1

T

T∑
t=0

|θ|

As this algorithm tries to build a model of failed demon-
strations, bas demonstrations should contribute more to the
model while the better ones should contribute less. In order
to achieve this, we train a separate GMM on each of the
trajectories. We then draw samples from each of these GMMs.
The number of samples that is chosen from each model is
proportional to the cost of the trajectory. These samples are
used to generate a GMM which is then used for exploration.
A similar approach is taken when updating the model based
on explored trajectories.

V. RESULTS

Figure 4 shows the simulation developed for the project. We
show results for three cases. We first describe and analyse the
results on synthetic data to evaluate correctness of our imple-
mentation. We then show the performance of this algorithm
on the inverted pendulum with and without using reward.

3

Fig. 3. Diagram of the inverted pendulum system

Fig. 4. Simulation of the inverted pendulum system

A. Synthetic Data

We generate synthetic data characterizing the relationship
between theta and Force to test the implementation. For each
value of theta, the value of force is taken to be proportional to
it with a Gaussian noise added which is proportional to theta.
In one demo the constant of proportionality is negative while
in the other one it is positive. Figure 7 shows the data with the
fitted model. Notice that as designed there is less variance for
smaller theta and more variance for larger theta. The pdf of
the DMMs generated at theta = 0 and theta = 90 is shown in
figures 5 and 6. It can be seen that as expected in low variance
are the donut resembles a Gaussian. On the other hand for a
state for which the variance is high the pdf is higher away from
the center. We notice that the pdf is mutimodal. This means
that when we use a technique such as gradient ascent to find
the mode, we may find any of the two modes depending on
the initialization thus introducing unwanted randomness into
the algorithm.
Figure 8 to 10 show the exploration paths taken in the space.
In Figure 9 note that the blue trajectory aligns with the
demonstrations when orientation is close to zero and moves
towards edges of the Gaussian for larger values of orientation.
After the model updates to that of figure 10 the region
near zero also becomes a high variance region and erratic
exploration is witnessed in the pink trajectory.

Fig. 5. Donut at 0 Fig. 6. Donut at 90

Fig. 7. Synthetic Data with GMM Fig. 8. Synthetic Data Explo 1

Fig. 9. Synthetic Data Explo 2 Fig. 10. Synthetic Data Explo 3

B. Inverted Pendulum without reward

We use the simulation control node to save demonstra-
tion trajectories using simple proportional control with noise.
Unlike the synthetically generated data this data is recorded
from actual gazebo simulation and thus there will be more
datapoints in areas where the pendulum spends more time.
For this experiment, following the paper exactly we treat
all failures as equal. In order to assess our performance
quantitatively we will evaluate cost for the first 7.5 secs, 15
secs and the complete trajectory length of 30 seconds.
Figures 11 to 16 show the 3 std dev ellipses for the models that
are fitted on the data. The most recent exploration is shown
in green. In most cases, the data is primarily described by
two broad gaussians capturing the uncertain region with large
theta and a third narrow gaussian that captures the behavior
near zero. We can also observe the randomness introduced by
using Gradient Ascent in these results. If we look at fig 14
and and 16 which show trajectories 7 and 11 respectively we
can observe that even though the model looks very similar
the trajectories taken are different. In 7 half the trajectory lies
below the data while the other half lies above, while for 11
all of the trajectory lies below the data.
As for the performance, looking at the 18 and table V-B clearly
shows that the exploration performed by the Donut method is

4

very erratic. Looking at the cost for the whole trajectory and
comparing it to the cost of actual demonstrations in table V-B
we note that the explorations perform very poorly. In order
to do well throughout the demonstration we need to have a
good mapping from angle to force for all values of the angle.
The results indicate that the space spanned by the successful
trajectories is very small and it may be very difficult for such
a method to reach there just using exploration. However, not
all hope is lost.
If we observe the cost for 15 seconds and 7.5 seconds, we
note that trajectories 3 and 9 performed to a decent extent.
Comparing them to the actual demonstrations, we see that
trajectory 3 did as well as the best actual demonstration for the
first 15 seconds. In addition trajectory 9 outperformed the best
demonstration by a factor of 3. These results mean that with
sufficient the algorithm will partially find the correct mapping.
This indicates that we might be able to use this method in
an incremental fashion. That is learning the correct force for
some theta, then using that to bootstrap further exploration
which will only explore for the remaining angles.

Tr No (Actual) 1 2 3 4
Cost (30s) 93.0757 104.7473 91.6079 76.1565
Cost (15s) 61.4735 88.4744 84.9328 66.5753
Cost (7.5s) 29.5136 43.7652 46.4241 37.9770

TABLE I
COSTS FROM ACTUAL TRAJECTORIES

Fig. 11. Inverted Pendulum Exp 1 Fig. 12. Inverted Pendulum Exp 3

Fig. 13. Inverted Pendulum Exp 5 Fig. 14. Inverted Pendulum Exp 7

C. Inverted Pendulum with reward

As described in the previous section, we can use the cost of
the trajectories to drive the model building process. We use the
same 4 actual demonstrations to build the model and carry on
exploration. However for this experiment, we build and update
the models using the cost for the 30s trajectory.

Fig. 15. Inverted Pendulum Exp 9 Fig. 16. Inverted Pendulum Exp
11

Fig. 17. Cost for the 4 actual Demonstration. Top to Bottom (30s, 15s,7.5s)

Fig. 18. Cost for the 11 explorations. Top to Bottom (30s, 15s,7.5s)

The fitted models and the exploration is shown in figures 20
to 25. If we compare the models in the case between reward
and no reward, we notice that the initial model is very similar
however it evolves very differently. From two broad gaussians
describing the data it turns into a single variance of very large
variance.
As is evident from Figure 19 which shows the cost for different
trajectories this method performs very poorly on the data. After
the first trajectory the performance goes down and continues
like that. Even with exploration there is no improvement
even after 10 trials. Also, the performance remains consistent
throughout the trajectory as the cost follows the same trend
for 30s,15s and 7.5s.
We can get some idea from the formed models why this
approach is failing. As we keep on giving higher weights to
the poorer trajectories, the model loses information about the
relatively successful trials. As we can fail in very different

5

Tr No (Explored) 1 2 3 4 5 6 7 8 9 10 11
Cost (30s) 150.3399 154.4538 116.2481 151.1992 145.2563 159.6868 135.1678 152.8853 116.3262 151.6808 150.2374
Cost (15s) 123.8537 131.9417 61.9360 125.5217 111.6739 144.7901 116.9440 128.9745 70.4682 131.7492 137.8092
Cost (7.5s) 76.0133 87.1472 22.5199 75.6113 46.4094 112.0619 85.4763 86.8828 12.5943 84.1958 103.7207

TABLE II
COSTS FROM EXPLORED TRAJECTORIES WITHOUT REWARD

ways, the whole model now has a very large variance. Now
the Donut explorer sees that variance for all states is high
and thus it maximizes exploration. However as we discussed
before the space of successful demonstrations is very small
and thus simply doing extreme exploration is not very likely
to help us get there. We keep exploring poorer trajectories,
the variance keeps increasing and our chances of finding a
successful trajectory keep going down.
The results indicate that for such as complex problem, there
is a need to come up with a better way to use the reward. It
may be helpful to use shorter portions of the trajectory, which
could then lead to partial improvements.

Fig. 19. Cost for the 11 explorations with reward. Top to Bottom (30s,
15s,7.5s)

Fig. 20. Inverted Pendulum with
reward Exp 1

Fig. 21. Inverted Pendulum with
reward Exp 3

D. Higher Dimensions

I also tried using both the velocity of the cart and the
pendulum orientation as the state, however that did not have a
qualitative improvement on the results. Therefore, I abandoned
it in favor of simplicity.

VI. CONCLUSION AND FUTURE WORK

This project showed that the inverted pendulum problem is
much harder than the sort of experiments used by the authors.

Fig. 22. Inverted Pendulum with
reward Exp 5

Fig. 23. Inverted Pendulum with
reward Exp 7

Fig. 24. Inverted Pendulum with
reward Exp 9

Fig. 25. Inverted Pendulum with
reward Exp 11

Although the reward methodology failed miserably, there is
some hope in using the approach without reward. The results
for short durations during exploration look promising for the
case with no reward. The best future direction to pursue is
to use the exploration in an iterative fashion. That is we
explore until we improve a part the response for certain angles
in the state and use that mapping to bootstrap subsequent
demonstrations. However, even with that it appears that this
algorithm might not prove effective for this class of problems.
In addition, incorporating reward into this and using this as a
part of a learning from successful demonstrations approach is
a difficult but interesting future direction of work.

VII. ACKNOWLEDGMENTS

I am grateful to Jan Petur Petersen for developing the PyPr
package. I have used that extensively in the exploration node.
In addition i have used the statistics toolbox in Matlab for
fitting mixture models.

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robotics and autonomous systems,
vol. 57, no. 5, pp. 469–483, 2009.

[2] D. H. Grollman and A. Billard, “Donut as i do: Learning from failed
demonstrations,” in Robotics and Automation (ICRA), 2011 IEEE Inter-
national Conference on. IEEE, 2011, pp. 3804–3809.

[3] J. Kober and J. R. Peters, “Policy search for motor primitives in robotics,”
in Advances in neural information processing systems, 2009, pp. 849–856.

6

[4] A. N. Meltzoff, “Understanding the intentions of others: re-enactment
of intended acts by 18-month-old children.” Developmental psychology,
vol. 31, no. 5, p. 838, 1995.

[5] S. Schaal et al., “Learning from demonstration,” Advances in neural
information processing systems, pp. 1040–1046, 1997.

